Aller au contenu

Les schémas de liaison à la terre

    Les réseaux de distribution sont caractérisés essentiellement par la nature du courant, le nombre de conducteurs actifs, mais aussi par la liaison à la terre, et c’est ce dernier aspect que l’on appelle le régime de neutre ou encore schéma de liaison à la terre (SLT).

    Le régime du neutre décrit la manière dont le neutre du générateur, en général la sortie d’un transformateur, est relié avec la terre ainsi que la situation des masses de l’installation par rapport à la terre. Il joue un rôle très important puisque, lors d’un défaut d’isolement ou de la mise accidentelle d’une phase à la terre, les valeurs prises par les courants de défaut, les tensions de contact et les surtensions sont étroitement liées à celui-ci.

    Les schémas de liaison à la terre sont repérés par deux lettres :

    * la première lettre rend compte de la situation du neutre par rapport à la terre du côté du fournisseur de l’énergie : on donne la lettre T lorsque le neutre est directement lié à la terre et la lettre I lorsque le neutre est isolé ou bien relié à la terre par l’intermédiaire d’une impédance ;
    * la seconde lettre décrit la situation des masses de l’installation : on donne la lettre T lorsque celles ci sont reliées à la terre et la lettre N lorsque celles-ci sont reliées au neutre.

    Il existe trois types de régimes de neutre : le SLT TT, le SLT TN et le SLT IT. Chaque schéma a ses avantages et ses inconvénients et par conséquent ses utilisations. Si le régime TN est préféré pour les installations industrielles, les locaux demandant une continuité de service tels que les blocs opératoires ou les centrales nucléaires nécessitent le schéma IT, qui ne provoque pas une coupure du circuit au premier défaut mais assure cependant la protection des personnes.

    Dans les installations domestiques, on utilise le régime TT dont le schéma de principe est reporté sur la figur (fig:schema_tt à rajouter).

    Ce SLT a en effet l’avantage d’empêcher les surtensions, réduisant ainsi les risques d’incendie. De plus, il est simple à mettre en œuvre et à contrôler, et il ne demande pas d’entretien. Il permet la coupure au premier défaut, ce qui facilite la détection de celui-ci (mais qui s’avère un inconvénient dans le domaine industriel). En revanche, de par sa nature même, il induit des courants de fuite en cas de défaut, et c’est d’ailleurs la détection de ces courants qui permet l’ouverture du circuit. Or, si une protection différentielle de type 300 ou 500 mA telle que celle effectuée dans les disjoncteurs principaux que fournit EDF à ses abonnées suffit à protéger les installations, il faut ajouter dans le schéma TT un organe de protection des personnes : un dispositif différentiel sensible aux courants de 30 mA. En effet, nous pouvons aisément comprendre d’après ce que nous avons vu précédemment qu’un courant de 500 mA présente un danger colossale pour l’utilisateur.

    Source: wikibooks.org | CC

    Ne restez pas à la traîne des dernières tendances technologiques !
    This is default text for notification bar